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Abstract

We present a near-optimal reduction from approximately
counting the cardinality of a discrete set to approximately
sampling elements of the set. An important application of
our work is to approximating the partition function Z of a
discrete system, such as the Ising model, matchings or col-
orings of a graph. The standard approach to estimating the
partition function Z(β∗) at some desired inverse temper-
ature β∗ is to define a sequence, which we call a cooling
schedule, β0 = 0 < β1 < · · · < β� = β∗ where Z(0)
is trivial to compute and the ratios Z(βi+1)/Z(βi) are easy
to estimate by sampling from the distribution corresponding
to Z(βi). Previous approaches required a cooling schedule
of length O∗(ln A) where A = Z(0), thereby ensuring that
each ratio Z(βi+1)/Z(βi) is bounded. We present a cool-
ing schedule of length � = O∗(

√
ln A).

For well-studied problems such as estimating the parti-
tion function of the Ising model, or approximating the num-
ber of colorings or matchings of a graph, our cooling sched-
ule is of length O∗(

√
n) and the total number of samples re-

quired is O∗(n). This implies an overall savings of a factor
of roughly n in the running time of the approximate count-
ing algorithm compared to the previous best approach.

A similar improvement in the length of the cooling sched-
ule was recently obtained by Lovász and Vempala in the
context of estimating the volume of convex bodies. While
our reduction is inspired by theirs, the discrete analogue
of their result turns out to be significantly more difficult.
Whereas a fixed schedule suffices in their setting, we prove
that in the discrete setting we need an adaptive sched-
ule, i. e., the schedule depends on Z . More precisely, we
prove any non-adaptive cooling schedule has length at least
O∗(ln A), and we present an algorithm to find an adaptive
schedule of length O∗(

√
ln A) and a nearly matching lower

bound.

1 Introduction

This paper explores the intimate connection between
counting and sampling problems. By counting problems,
we refer to estimating the cardinality of a large set (or its
weighted analogue), or in a continuous setting, an inte-
gral over a high-dimensional domain. The sampling prob-
lem refers to generating samples from a probability distri-
bution over a large set. The well-known connection be-
tween counting and sampling (first studied in a general
complexity-theoretic context by [13] and explored earlier
in a more restricted setting by [1]) is the starting point for
popular Markov chain Monte Carlo (MCMC) methods for
many counting problems. Some notable examples from
computer science are the problems of estimating the volume
of a convex body [4, 16] and approximating the permanent
of a non-negative matrix [12].

In statistical physics, a key computational task is esti-
mating a partition function, which is an example of a count-
ing problem. Evaluations of the partition function yield
estimates of thermodynamic quantities of interest, such as
the free energy and the specific heat. The corresponding
sampling problem is to generate samples from the so-called
Gibbs (or Boltzman) distribution. The analogue of the con-
nection between sampling and counting in this area is multi-
stage sampling [22].

We present an improved reduction from approximate
counting to approximate sampling. These results improve
the running time for many counting problems where ef-
ficient sampling schemes exist. We present our work in
the general framework of partition functions from statisti-
cal physics. This framework captures many well-studied
models from statistical physics, such as the Ising and Potts
models, and also captures many natural combinatorial prob-
lems, such as colorings, independent sets, and matchings.
For the purposes of this paper we define a (discrete) parti-
tion function as follows.

Definition 1.1. Let n ≥ 0 be an integer. Let a0, . . . , an be
non-negative real numbers such that a0 ≥ 1. The function

Z(β) =
n∑

i=0

aie−iβ



is called a partition function of degree n. Let A := Z(0).

This captures the standard notion of partition functions
from statistical physics in the following manner. The quan-
tity i corresponds to the possible values of the Hamiltonian.
Then ai is the number of configurations whose Hamiltonian
equals i. For instance, in the (ferromagnetic) Ising model
on a graph G = (V, E), a configuration is an assignment
of +1 and −1 spins to the vertices. The Hamiltonian of a
configuration is the number of edges whose endpoints have
different spins. The quantity β is referred to as the inverse
temperature. The computational goal is to compute Z(β)
for some choice of β ≥ 0. Note, when β = 0 the partition
function is trivial since Z(0) =

∑n
i=0 ai = 2|V |. The con-

dition a0 ≥ 1 is clearly satisfied, in fact, we have a0 = 2 by
considering the all +1 and the all −1 configurations.

The general notion of partition function also captures
standard combinatorial counting problems as illustrated by
the following example. Let Ω be the set of all k-labelings of
a graph G = (V, E) (i. e., labelings of the vertices of G by
numbers {1, . . . , k}). Given a labeling σ, let its Hamilto-
nian H(σ) be the number of edges in E that are monochro-
matic in σ. Let Ωi denote the set of all k-labelings of G
with H(σ) = i. Let ai = |Ωi|. We would like to com-
pute Z(∞) = a0, i. e., the number of valid k-colorings of
G. Once again, the case β = 0 is trivial since we have
Z(0) = k|V |. The condition a0 ≥ 1 simply requires that
there is at least one proper k-coloring.

The standard approach [22] to compute Z(β) is to ex-
press it as a telescoping product of ratios of the partition
function. Consider a set of configurations Ω which can be
partitioned as Ω = Ω0 ∪Ω1 ∪· · · ∪Ωn, where |Ωi| = ai for
0 ≤ i ≤ n. Suppose that we have an algorithm which for
any inverse temperature β ≥ 0 generates a random configu-
ration from the distribution µβ over Ω where the probability
of a configuration σ ∈ Ω is

µβ(σ) =
e−βH(σ)

Z(β)
, (1)

where H(σ) is the Hamiltonian of the configuration defined
as H(σ) = i for σ ∈ Ωi. We now describe the standard
approach estimating a partition function. To approximate
a0 = Z(∞), take β0 < β1 < · · · < β� with β0 = 0 and
β� = ∞. Express Z(∞) as a telescoping product

Z(∞) = Z(0)
Z(β1)
Z(β0)

Z(β2)
Z(β1)

. . .
Z(β�)

Z(β�−1)
. (2)

The initial term Z(0) is typically trivial to compute. It re-
mains to estimate the ratios. In the general setting of Defi-
nition 1.1, for X ∼ µβ , the random variable

Wβ,β′ := e(β−β′)H(X) (3)

is an unbiased estimator for Z(β′)/Z(β). Indeed,

E (Wβ,β′) =
1

Z(β)

∑
σ∈Ω

e−βH(σ) · e(β−β′)H(σ) =
Z(β′)
Z(β)

.

(4)
Equation (4) is related to the single histogram, or reweight-
ing methods in statistical physics [20, 6].

We approximate each fraction in the product (2) using
the unbiased estimator Wβi,βi+1 . Taking sufficiently many
samples for each Wβi,βi+1 will give a good approximation
of a0. The question we study in this paper is: how should
one choose the inverse temperatures β0, . . . , β� so as to
minimize the number of samples needed to estimate (2)?
A specific choice of β0, . . . , β� is called a cooling schedule.

In the past, MCMC algorithms have used cooling sched-
ules that ensure that each ratio in the telescoping product
is bounded by a constant. Intuitively, this seems to be the
best possible setting — a higher ratio in each phase requires
more samples overall. For applications such as colorings or
Ising model, requiring that each ratio is at most a constant
implies that the length of the cooling schedule is at least
Ω(n), since Z(0) and Z(∞) typically differ by an expo-
nential factor. All cooling schedules prior to our work were
non-adaptive, i.e., the sequence depends only on the param-
eters n and A but not the structure of the partition function
Z .

In the discrete setting, a trivial non-adaptive cooling
schedule has length O(n ln A), and, recently, [2] pre-
sented an improved non-adaptive cooling schedule of length
O((ln n) ln A). The recent volume algorithm of [16, 17]
uses a non-adaptive cooling schedule of length O(

√
n) to

estimate the volume of a convex body in R
n. The main

idea for the short cooling schedule in the volume setting is
that even though a ratio to be estimated in not bounded by
a constant, the variance of the estimator is at most a con-
stant times the square of its expectation. The proof of this
relies heavily on the logconcavity of the function βnZ(β)
where Z is the analogue of the partition function in their
setting. The cooling schedule of [16, 17] was also useful in
the setting of convex optimization [14].

The discrete setting presents a new challenge. As we
show in this paper, there can be no short non-adaptive cool-
ing schedule for discrete partition functions, i.e., any non-
adaptive schedule has length Ω((ln n) ln A) in the worst
case.

Our main result is that every partition function has an
adaptive schedule of length roughly

√
ln A, where A =

Z(0). (Note,
√

ln A is roughly
√

n in the examples we have
been considering here). Further, the schedule can be figured
out efficiently on the fly, with little overhead in the com-
plexity. Lastly, this bound is nearly the best possible (up to
logarithmic factors in the leading term).

The existence of a short schedule follows from an in-



teresting geometric fact: any convex function f can be ap-
proximated by a piecewise linear function g consisting of
few pieces, see Figure 1 in Section 4 for an illustration.

For well-known problems such as counting colorings or
matchings, and estimating the partition function of the Ising
model, our results imply an improvement in the running
time by a factor of n, since the complexity grows with the
square of the schedule length; see Section 6 for a precise
statement of the applications of our results.

In Section 2 we formalize the setup described in this in-
troduction. The lower bound for non-adaptive schedules is
formally stated as Lemma 3.1 in Section 3. The existence
of a short cooling schedule is proved in Section 4, and for-
mally stated in Theorem 4.1. The algorithm for constructing
a short cooling schedule is presented in Section 5. Finally,
in Section 6 we present applications of our improved cool-
ing schedule.

Many of the proofs and details of the algorithms are
omitted from this extended abstract. We encourage the in-
terested reader to refer to the full version of the paper [21].

2 Chebyshev cooling schedules

Let W := Wβ,β′ be the estimator defined by (3) whose
expectation is a individual ratio in the telescoping product.
As usual, we will use the squared coefficient of variance
Var (W )/E (W )2 as a measure of the quality of the estima-
tor W , namely to derive a bound on the number of samples
needed for reliable estimation of E (W ). We will also use
the quantity E

(
W 2

)
/E (W )2 = 1 + Var (W )/E

(
W 2

)
.

The following lemma of Dyer and Frieze [3] is now well-
known.

Theorem 2.1. Let W1, . . . , W� be independent random
variables with E

(
W 2

i

)
/E (Wi)

2 ≤ B for i ∈ [�]. Let

Ŵ = W1 . . . W�. Let Si be the average of 16B�/ε2

independent random samples from Wi for i ∈ [�]. Let
Ŝ = S1S2 · · ·S�. Then

Pr
(
(1 − ε)E

(
Ŵ

)
≤ Ŝ ≤ (1 + ε)E

(
Ŵ

))
≥ 3/4.

It will be convenient to rewrite E
(
W 2

)
/E (W )2 for

W := Wβ,β′ in terms of the partition function Z . We have

E
(
W 2

)
=

1
Z(β)

∑
σ∈Ω

e−βH(σ)e2(β−β′)H(σ) =
Z(2β′ − β)

Z(β)
,

and hence

E
(
W 2

)
E (W )2

=
Z(2β′ − β)Z(β)

Z(β′)2
. (5)

Equation (5) motivates the following definition.

Definition 2.2. Let B > 0 be a constant. Let Z be a parti-
tion function. Let β0, . . . , β� be a sequence of inverse tem-
peratures such that 0 = β0 < β1 < · · · < β� = ∞. The
sequence is called a B-Chebyshev cooling schedule for Z if

Z(2βi+1 − βi)Z(βi)
Z(βi+1)2

≤ B,

for all i = 0, . . . , � − 1.

The following bound on the number of samples is an im-
mediate consequence of Theorem 2.1.

Corollary 2.3. Let Z be a partition function. Suppose that
we are given a B-Chebyshev cooling schedule β0, . . . , β�

for Z . Then, using 16B�2/ε2 samples in total, we can com-
pute Ŝ such that

P
(
(1 − ε)Z(∞) ≤ Ŝ ≤ (1 + ε)Z(∞)

) ≥ 3/4.

3 Lower bound for non-adaptive schedules

A cooling schedule will be called non-adaptive if it de-
pends only on n and A = Z(0) and assumes Z(∞) ≥ 1.
Thus, such a schedule does not depend on the structure of
the partition function.

The advantage of non-adaptive cooling schedules is that
they do not need to be figured out on the fly. An example of
a non-adaptive Chebyshev cooling schedule that works for
any partition function of degree n, where Z(0) = A, is

0,
1
n

,
2
n

, . . . ,
n ln A

n
,∞. (6)

The idea behind the schedule (6) is that small changes in the
inverse temperature result in small changes of the partition
function.

The length of the schedule (6) is O(n ln A). The follow-
ing more efficient non-adaptive Chebyshev cooling sched-
ule of length O((ln A) ln n) is given in [2]:

0,
1
n

,
2
n

, . . . ,
k

n
,
kγ

n
,
kγ2

n
, . . . ,

kγt

n
,∞, (7)

where k = �lnA	, γ = 1+ 1
ln A , and t = �(1+ lnA) ln n	.

Next we show that the schedule (7) is the best possible up
to a constant factor. We will see later that adaptive cooling
schedules can be much shorter.

Lemma 3.1. Let n ∈ Z
+, and A, B ∈ R

+. Let
S = β0, β1, . . . , β� be a non-adaptive B-Chebyshev cool-
ing schedule which works for all partition functions of de-
gree at most n with Z(0) = A, and Z(∞) ≥ 1. Assume
β0 = 0 and β� = ∞. Then

� ≥ ln(n/e)
(

ln(A − 1)
ln(4B)

− 1
)

.



The number of samples needed in Theorem 2.1 (and
Corollary 2.3) is linear in B and hence, in view of
Lemma 3.1, the optimal value of B is a constant. Our
understanding of non-adaptive schedules is now complete
up to a constant factor. In particular, the schedule (7) and
Lemma 3.1 imply that the optimal non-adaptive schedule
has length Θ((lnA) ln n).

We would like to have a similar understanding
of adaptive cooling schedules. A reasonable conjec-
ture is that the optimal adaptive schedule has length
Θ(

√
(ln A) ln n). We will present an adaptive schedule

of length O(
√

ln A(ln n) ln ln A), which comes reasonably
close to our guess (in fact, in our applications we are only
off by polylogarithmic factors).

4 Adaptive cooling schedules

In this section, we prove the existence of short adaptive
cooling schedules for general partition functions. We now
formally state the result (to simplify the exposition we will
choose B = e2, the construction works for any B).

Theorem 4.1. Let Z be a partition function of degree n.
Let A = Z(0). Assume that Z(∞) ≥ 1. There exists an
e2-Chebyshev cooling schedule S for Z whose length is at
most 4(ln lnA)

√
(ln A) ln n.

It will be convenient to define f(β) = lnZ(β). Some
useful properties of f are summarized in the next lemma.

Lemma 4.2. Let f(β) = ln Z(β) where Z is a partition
function of degree n. Then (a) f is decreasing, (b) f ′ is
increasing (i. e., f is convex) (c) f ′(0) ≥ −n.

Recall that an e2-Chebyshev cooling schedule for Z is
a sequence of inverse temperatures β0, β1, . . . , β� such that
β0 = 0, β� = ∞, and

Z(2βi+1 − βi)Z(βi)
Z(βi+1)2

≤ e2. (8)

Since (8) is invariant under scaling we can, without loss
of generality, assume Z(∞) = 1 (or equivalently a0 = 1).
Since we assumed a0 ≥ 1 the scaling will not increase
Z(0).

Let f(β) = ln Z(β), so that f(0) = ln A, and f(∞) =
0. The condition (8) is equivalent to

f(2βi+1 − βi) + f(βi)
2

− f(βi+1) ≤ 1. (9)

If we substitute x = βi and y = 2βi+1 − βi, the condition
can be rewritten as

f

(
x + y

2

)
≥ f(x) + f(y)

2
− 1.

In words, f satisfies approximate concavity. The main idea
of the proof is that we do not require this property to hold
everywhere but only in a sparse subset of points which will
correspond to the cooling schedule. A similar viewpoint is
that we will show that f can be approximated by a piece-
wise linear function g with few pieces, see Figure 1 for an
illustration. We form the segments of g in the following
inductive, greedy manner. Let γi denote the endpoint of
the last segment. We then set γi+1 as the maximum value
such that the midpoint mi of the segment (γi, γi+1) satis-
fies (9) (for βi = γi, βi+1 = mi). We now formally state
the lemma on the approximation of f by a piecewise linear
function.

Lemma 4.3. Let f : [0, γ] 
→ R be a decreasing, convex
function. There exists a sequence γ0 = 0 < γ1 < · · · <
γj = γ such that for all i ∈ {0, . . . , j − 1},

f

(
γi + γi+1

2

)
≥ f(γi) + f(γi+1)

2
− 1, (10)

and

j ≤ 1 +

√
(f(0) − f(γ)) ln

f ′(0)
f ′(γ)

.

Proof :
Let γ0 := 0. Suppose that we already constructed the
sequence up to γi. Let γi+1 be the largest number from
the interval [γi, γ] such that (10) is satisfied. Let mi =
(γi + γi+1)/2, let ∆i = (γi+1 − γi)/2, and Ki = f(γi) −
f(γi+1).

If γi+1 = γ then we are done constructing the sequence.
Otherwise, by the maximality of γi+1, we have

f(mi) =
f(γi) + f(γi+1)

2
− 1. (11)

Using the convexity of f and (11) we obtain

−f ′(γi) ≥ f(γi) − f(mi)
∆

=
Ki + 2

2∆
, and

−f ′(γi+1) ≤ f(mi) − γi+1

∆
=

Ki − 2
2∆

.

(12)

Combining the two equations from (12) we obtain

f ′(γi+1)
f ′(γi)

=
−f ′(γi+1)
−f ′(γi)

≤ Ki − 2
Ki + 2

= 1 − 4
Ki + 2

. (13)

From the second part of (12) and the fact that f is decreasing
we obtain Ki ≥ 2. Hence we can estimate (13) as follows

f ′(γi+1)
f ′(γi)

≤ 1 − 4
Ki + 2

≤ 1 − 1
Ki

≤ e−1/Ki . (14)

Since f is decreasing, we have

j−2∑
i=0

Ki ≤ f(0) − f(γ). (15)



Now we combine (14) for all i ∈ {0, . . . , j−2} (we use the
fact that f ′ is increasing).

j−2∑
i=0

1
Ki

≤ ln
f ′(0)
f ′(γ)

. (16)

Applying Cauchy-Schwarz inequality on (15) and (16) we
obtain

(j − 1)2 ≤ (f(0) − f(γ)) ln
f ′(0)
f ′(γ)

.

�

The construction immediately yields a natural cooling
schedule. A schedule ending at βk = γi, can now be ex-
tended by βk+1 = mi where mi is the midpoint of the
segment (γi, γi+1). Moreover, we can then set βk+2 as the
midpoint of (mi, γi+1). We continue in this geometric man-
ner for at most ln lnA steps, after which we can set the next
inverse temperature in our schedule to γi+1. Then we con-
tinue on the next segment. It then follows that the length �
of the cooling schedule satisfies � ≤ j ln lnA where j is the
length of the sequence from Lemma 4.3. We now present
the proof of the Theorem 4.1.
Proof of Theorem 4.1:
Let γ be such that f(γ) = 1. We describe a sequence
β0 = 0 < β1 < . . . β� = γ satisfying (9). Note that since
f(γ) = 1, we can take β�+1 = ∞ and the sequence will
still satisfy (9) (and thus we get a complete e2-Chebyshev
cooling schedule for Z). We have

Z(γ) = exp(f(γ)) =
n∑

i=0

aie−iγ = e,

and, hence, (using a0 = 1)

−Z ′(γ) =
n∑

i=0

iaie−iγ ≥ e − 1.

Thus

−f ′(γ) = − lnZ(γ) =
−Z ′(γ)
Z(γ)

=∑n
i=0 iaie−iγ∑n
i=0 aie−iγ

≥ e − 1
e

.

By Lemma 4.3, there exists a sequence of γ0 = 0 < γ1 <
· · · < γj = γ of length

j ≤ 1 +
√

(ln A) ln
ne

e − 1
(17)

such that (10) is satisfied.
Now we show how to add �ln lnA	 inverse tempera-

tures between each pair γi and γi+1 to obtain our cooling

schedule. For notational convenience we show this only for
γ0 = 0 and γ1.

Note that (10) implies that (9) is satisfied for β0 = 0 and
β1 = γ1/2. We now show that

0, (1/2)γ1, (3/4)γ1, (7/8)γ1, . . . , (1 − 2−�ln ln A�)γ1, γ1

is an e2-Chebyshev cooling schedule. Let

g(x) = f

(
γ1 + x

2

)
− f(x) + f(γ1)

2
.

Note that by (11) we have g(0) = −1. We have

g′(x) =
1
2

(
f ′

(
γ1 + x

2

)
− f ′(x)

)
.

Thus
if x ≤ γ1 we have g′(x) ≥ 0, (18)

and, hence,
g(x) ≥ g(0) = −1.

Plugging in x = (1 − 2−t)γ1 we conclude

f((1 − 2−t−1)γ1) ≥ f((1 − 2−t)γ1) + f(γ1)
2

− 1. (19)

From (11) and (19) it follows that the sequence

0, (1/2)γ1, (3/4)γ1, (7/8)γ1, . . . , (1 − 2t)γ1, γ1 (20)

satisfies (9). We will now show that we can truncate the
sequence at t = �ln lnA	 and take the next step to γ1.

By the convexity of f

f((1 − 2−t−1)γ1) ≤ f((2 − 2−t)γ1) + f(γ1)
2

,

and hence

f((1 − 2−t−1)γ1) − f(γ1) ≤ f((1 − 2−t)γ1) − f(γ1)
2

.

(21)
The equation (21) states that the distance of f((1−2−t)γ1)
from f(γ1) halves in each step. Recall that f(γ1/2) −
f(γ1) ≤ f(0) ≤ ln A and, hence, for t := �ln ln A	
we have

f((1 − 2−t)γ1) − f(γ1) ≤ 1.

This completes the construction of the cooling schedule.
The length of the schedule is ≤ jt. Plugging in (17) yields
the theorem. �

The optimal Chebyshev cooling schedule can be ob-
tained in a greedy manner. In particular, starting with
β0 = 0, and then from βi, choosing the maximum βi+1

for which (9) is satisfied. The reason why the greedy strat-
egy works is that if we can step from β to β′, then for any
γ ∈ [β, β′] we can step from γ to β′ (i. e., having large in-
verse temperature can not hurt us). The last fact follows
from the convexity of f (or alternatively from (18)).
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Figure 1. The light curve is f(x) = ln Z(x) for
the partition function Z(x) = (1 + exp(−x))20.
The dark curve is a piecewise linear function
g consisting of 3 pieces which approximates
f . In particular, g ≥ f and the midpoint of
each piece is close to the average of the end-
points (specifically, (8) holds).

Corollary 4.4. Let Z be a partition function of degree n.
Let A = Z(0). Assume that Z(∞) ≥ 1. Suppose that
β0 < · · · < β� is a cooling schedule for Z . Then the number
of indices i for which

Z(2βi+1 − βi)Z(βi)
Z(βi+1)2

≥ e2

is at most 4(ln lnA)
√

(ln A) ln n.

5 An adaptive cooling algorithm

The main theorem of the previous section proves the ex-
istence of a short adaptive cooling schedule, whereas in Sec-
tion 3 we proved any non-adaptive cooling schedule is much
longer. In this section, we present an adaptive algorithm to
find a short cooling schedule. We state the main result be-
fore describing the details of the algorithm. The algorithm
has access to a sampling oracle, which on input β produces
a random sample from the distribution µβ , defined by (1)
(or a distribution sufficiently close to µβ).

Theorem 5.1. Let Z be a partition function. Assume
that we have access to an (approximate) sampling ora-
cle from µβ for any inverse temperature β. Let δ′ >
0. With probability at least 1 − δ′, the following algo-
rithm outputs a B-Chebyshev cooling schedule for Z (with
B = 3 · 106), where the length of the schedule is at most
� ≤ 38

√
ln A(ln n) ln ln A. The algorithm uses at most

Q ≤ 107(ln A)
(
(ln n) + ln lnA

)5 ln 1
δ′ samples from the

µβ-oracles. The samples output by the oracles have to be
from a distribution µ′

β which is within variation distance
≤ δ′/(2Q) from µβ .

Combining Theorem 5.1 with Corollary 2.3 we obtain.

Corollary 5.2. Let Z be a partition function. Let ε > 0
be the desired precision. Suppose that we are given access
to oracles which sample from the distribution within varia-
tion distance ε2/(108(ln A)

(
(ln n)+ln lnA

)5
) from µβ for

any inverse temperature β. Then, using 1010

ε2 (ln A)
(
(ln n)+

ln lnA
)5

samples in total, we can obtain a random variable

Ŝ such that

P
(
(1 − ε)Z(∞) ≤ Ŝ ≤ (1 + ε)Z(∞)

) ≥ 3/4.

5.1 High-level Algorithm Description

We begin by presenting the high-level idea of our al-
gorithm. Ideally we would like to find a sequence β0 =
0 < β1 < · · · < β� = ∞ such that, for some constants
1 < c1 < c2, for all i, the random variable W := Wβi,βi+1

satisfies

c1 ≤ E
(
W 2

)
E (W )2

≤ c2. (22)

The upper bound in (22) is necessary so that Chebyshev’s
inequality guarantees that few samples of W are required to
obtain a close estimate of the ratio Z(βi+1)/Z(βi). On the
other side, the lower bound would imply that the length of
the cooling schedule is close to optimal. We will guarantee
the upper bound for every pair of inverse temperatures, but
we will only obtain the lower bound for a sizable fraction of
the pairs. Then, using Corollary 4.4, we will argue that the
schedule is short.

During the course of the algorithm we will try to find
the next inverse temperature βi+1 so that (22) is satisfied.
For this we will need to estimate u = u(βi, βi+1) :=
E

(
W 2

)
/E (W )2. We already have an expression for u,

given by equation (5):

u =
E

(
W 2

)
E (W )2

=
Z(2βi+1 − βi)Z(βi)

Z(βi+1)2
=

Z(2βi+1 − βi)
Z(βi+1)

Z(βi)
Z(βi+1)

.

Hence, to estimate u it suffices to estimate the ratios
Z(2βi+1 − βi)/Z(βi) and Z(βi)/Z(βi+1). Recall that the
goal of estimating u was to show that W is an efficient es-
timator of Z(βi+1)/Z(βi). Now it seems that to estimate
u we already need a good estimator for W (with roles of
βi, βi+1 switched). An important component of our algo-
rithm, which allows us to escape from this circular loop, is
a rough estimator for u which bypasses W .



Recall, the Hamiltonian H takes values in {0, 1, . . . , n}.
For the purposes of estimating u it will suffice to know
the Hamiltonian within some relative accuracy. Thus, we
partition {0, 1, . . . , n} into (discrete) intervals of roughly
equivalent values of the Hamiltonian. Since we need rela-
tive accuracy the size of the interval is smaller for smaller
values of the Hamiltonian (specifically, value i is an inter-
val of size about i/

√
ln A). We let P denote the set of in-

tervals. We construct P inductively, starting with interval
[0, 0]. Suppose that {0, . . . , b − 1} is already partitioned.
Let w := �b/√ln A, add the interval [b, b + w] to P , and
continue inductively on {b + w + 1, . . . , n}. Note, the ini-
tial

√
ln A intervals are of size 1 (i. e., contain one natural

number), and have width 0. We have the following explicit
upper bound on the number of intervals in P .

Lemma 5.3. |P | ≤ 4
√

ln A ln n.

The rough estimator for u needs an interval I = [b, c] ⊆
{1, . . . , n} which contributes a significant portion to Z(β)
for all β ∈ [βi, 2βi+1 − βi]. Let h = 1/(8|P |).
Definition 5.4. Let Z be a partition function. Let β ∈ R

+

be an inverse temperature. Let I = [b, c] ⊆ {0, . . . , n} be
an interval. For h ∈ (0, 1), we say that I is h-heavy for β,
if for X chosen from µβ , we have Pr (H(X) ∈ I) ≥ h.

Thus, if we generate a random sample from µβ we have
a significant probability that the sample is in the interval I .

Lemma 5.5. Given an inverse temperature β, using s =
�(8/h) ln 1

δ 	 samples from µβ we can find an h-heavy in-
terval I ∈ P . The failure probability of the procedure is at
most δ|P |.

The key observation is that if an interval I is heavy for
inverse temperatures β1 and β2, then by generating samples
from µβ1 and µβ2 , and looking at the proportion of samples
whose Hamiltonian falls into interval I , we can roughly es-
timate Z(β2)/Z(β1).

Lemma 5.6. Let Z be a partition function. Let I = [b, c] ⊆
{0, . . . , n} be an interval. Let δ ∈ (0, 1]. Suppose that I
is h-heavy for inverse temperatures β1, β2 ∈ R

+. Assume
that

|β1 − β2| · (c − b) ≤ 1.

For k = 1, 2 we define the following. Let Xk ∼ µβk
and let

Yk be the indicator function for the event H(Xk) ∈ I . Let
s = �(8/h) ln 1

δ 	. Let Uk be the average of s independent
samples from Yk. Let

EST(I, β1, β2) :=
U1

U2
exp(b(β1 − β2)).

With probability at least 1 − 4δ we have

Z(β2)
4eZ(β1)

≤ EST(I, β1, β2)) ≤ 4eZ(β2)
Z(β1)

.

Thus, if an interval I is heavy for an interval of inverse
temperatures B = [βi, β

∗], then we can find a βi+1 ∈ B′ =
[βi, (βi + β∗)/2] satisfying (22) (making an optimal move
in some sense) or determine there is no such βi+1 ∈ B′.

If such a βi+1 ∈ B satisfying (22) exists, then we can set
βi+1 as the next temperature and continue the algorithm by
inductively considering the interval [βi+1, β

∗], in which I
is still heavy. We call the intermediate inverse temperature
βi+1 an “optimal” step since the number of such tempera-
tures in our cooling schedule is upper bounded by Corollary
4.4.

In the case that no such βi+1 exists, we construct a se-
quence of inverse temperatures that goes from βi to β∗

where the upper bound in (22) holds for this sequence. We
will show that O(ln ln A) intermediate inverse temperatures
are sufficient to go from βi to β∗ (the construction is analo-
gous to the sequence (20) in the proof of Theorem 4.1). We
refer to these O(ln ln A) intermediate inverse temperatures
as “interval” steps since they are used to finish off an inter-
val and are not optimal in the sense of Corollary 4.4. An
important fact is that for an interval I , the set of β’s where
I is heavy is itself an interval.

Lemma 5.7. Let Z be a partition function. Let I = [b, c] ⊆
{0, . . . , n} be an interval. Let h ∈ (0, 1]. The set of in-
verse temperatures for which I is h-heavy forms an interval
(possibly empty).

Hence, once we reach β∗ we will be done with this inter-
val I and will not need to consider it again. Therefore, the
number of interval steps is at most O(|P | ln ln A).

Finally, our algorithm will find a cooling schedule whose
length is at most

O
(
(ln ln A)

√
(ln A) ln n +

√
ln A(ln n) ln ln A

)
, (23)

where the first term comes from Corollary 4.4 and the sec-
ond term is O(|P | ln ln A).

To simplify the high-level exposition of the algorithm
we glossed over a technical aspect of the algorithm. The
interval B might be too long so that the estimator of u is
too rough (since the range for which the rough estimator
of Lemma 5.6 works is bounded by the reciprocal of the
width of the interval I). Therefore if B is too long, we trun-
cate the interval B into a subinterval B1 = [βi, βi + 1/w]
where w = b − c is the width of interval I = [b, c]. We
first consider the subinterval B1. If we find an optimal step
within B1, then we add this inverse temperature βi+1 as
the next step in the cooling schedule and continue the al-
gorithm by inductively considering the interval [βi+1, β

∗].
Alternatively if there is no optimal step within B1 we finish
off the subinterval B1 using O(ln ln A) steps. We refer to
these moves as “long” steps, since they no longer finish off
the interval I , and after finishing B1 we continue the algo-
rithm by inductively considering the interval [βi+1/w, β∗].



Long steps will be analyzed by a separate argument, and
their number will be smaller than (23). Thus, in the de-
tailed description of the algorithm we will have three kinds
of steps: optimal steps, interval steps, and long steps.

5.2 Detailed Algorithm Description

We now give a detailed description of our algorithm for
constructing the cooling schedule. Let δ′ be the desired fi-
nal error probability of our algorithm. We will use the algo-
rithms implicitly described in Lemmas 5.5 and 5.6 with pa-
rameters δ = δ′

1600(ln n)2(ln A)2 and s =
⌈
(8/h) ln 1

δ

⌉
. Cer-

tain technical details of the algorithm are omitted, as well
as the analysis of the running time and proof of correctness.
We encourage the interested reader to refer to [21].

The algorithm will keep a set Bad of banned intervals
which is initially empty.

Note it suffices to have the penultimate β in the sequence
be βi−1 = ln A, since we can then set βi = ∞. The al-
gorithm for constructing the sequence works inductively.
Thus, consider some starting β0.

1. We first find an interval I that is h-heavy at β0 and is
not banned. By generating s samples from the distribu-
tion µβ0 and taking the most frequently seen interval,
we will successfully find an h-heavy interval with high
probability.

2. Let w denote the width of I , i. e., w = c−b where I =
[b, c]. Our rough estimator (given by Lemma 5.6) only
applies for β1 ≤ β0 + 1/w (by convention 1/0 = ∞).
Moreover, since we only need to reach a final inverse
temperature of ln A, let L = min{β0 + 1/w, ln A}.
Now we concentrate on constructing a cooling sched-
ule within (β0, L].

3. We do binary search in the interval [β0, L] to find the
maximum β∗ such that β∗ is h-heavy. We can use bi-
nary search because, by Lemma 5.7, the set of inverse
temperatures for which an interval is heavy is an inter-
val in R

+.

4. We now check if there is an “optimal” move within the
interval B′ = (β0, (β0 + β∗)/2]. We want to find
the maximum β ∈ B′ satisfying (22) for u(β0, β), or
determine no such β exists. Let c1 = e2 and c2 =
3 ·106 for (22). To find such a β, we do a binary search
and apply Lemma 5.6 to estimate the ratios Z(2β −
β0)/Z(β) and Z(β0)/Z(β). Note for β ∈ B′ we have
2β − β0 ∈ [β0, β

∗], hence, the interval I is h-heavy
at inverse temperatures β0, β and 2β − β0 and Lemma
5.6 applies.

(a) If such a β ∈ B′ exists, then we set β as the next
inverse temperature and we repeat the algorithm

starting from β. We refer to these steps as “opti-
mal” moves.

(b) If no such β exists, then we can reach the end of
the interval B as follows. There are two cases,
either the interval was too wide for the applica-
tion of Lemma 5.6, or the interval I stops being
heavy too soon. More precisely, either:

i. If β∗ = L, then we set (β0 + β∗)/2 as the
next inverse temperature. Moreover, if β∗ <
ln A we continue the algorithm starting from
β∗; whereas if β∗ = lnA we are done. We
refer to these steps as “long” moves.

ii. Otherwise, we add the following inverse
temperatures to our schedule:

β0 +
1
2
γ, β0 +

3
4
γ, β0 +

7
8
γ, . . . ,

β0 + (1 − 2−t)γ, β0 + γ,

where γ = β∗ − β0 and t = �ln ln A	. We
add the interval I to the set of banned inter-
vals Bad and continue the algorithm starting
from β∗. We refer to these steps as “inter-
val” moves since the interval I will not be
used by the algorithm again.

6 Applications

We detail several specific applications of our work:
matchings, Ising model, colorings and independent sets. To
simplify the comparison of our results with previous work
and since we have not optimized polylogarithmic factors in
our work, we use O∗() notation which hides polylogarith-
mic terms and the dependence on ε. Our cooling sched-
ule results in a savings of a factor of O∗(n) in the running
time for all of the approximate counting problems consid-
ered here.

6.1 Matchings

Jerrum and Sinclair [11] presented a Markov chain for
sampling a random matching of an arbitrary input graph
G = (V, E). They proved the chain has relaxation time
τ2 = O(nm), where n is the number of vertices and m
is the number of edges of G (see [9] for the claimed up-
per bound). Our work yields a cooling schedule of length
� = O(

√
n log4 n). To be precise, this requires what we

refer to as a “reversible” cooling schedule to utilize the no-
tion of “warm-starts” (this is carried out in detail in [21]).
The previous best schedule was presented by [2] which had
length O(n log2 n). Thus, we save a factor of O∗(n) in
the running time for approximately counting the number of
matchings of G.



Corollary 6.1. For any G = (V, E), for all ε > 0,
let M(G) denote the set of matchings of G. We can
compute an estimate EST such that: EST(1 − ε) ≤
|M(G)| ≤ EST(1 + ε) with probability ≥ 3/4 in time
O(n2mε−2 log7 n) = O∗(n2m).

Recall, the error probability 3/4 can be replaced by
1 − δ, for any δ > 0, at the expense of an extra factor of
O(log(1/δ)) in the running time.

6.2 Spin Systems

Spin systems are a general class of statistical physics
models where our results apply. We refer the reader to
[18, 24] for an introduction to spin systems. The exam-
ples we highlight here are well-studied examples of spin
systems. Recall, the mixing time of a Markov chain is the
number of transitions (from the worst initial state) to reach
within variation distance ≤ δ of the stationary distribution,
where 0 < δ < 1. The following results follow in a stan-
dard way from the stated mixing time result combined with
Corollary 5.2.

Colorings: For a graph G = (V, E) with maximum de-
gree ∆ we are interested in approximating the number of
k-colorings of G. Here, we are coloring the vertices using a
palette of k colors so that adjacent vertices receive different
colors. This problem is also known as the zero-temperature
(thus β = ∞) anti-ferromagnetic Potts model. The sim-
ple single-site update Markov chain known as the Glauber
dynamics is ergodic with unique stationary distribution uni-
form over all k-colorings whenever k ≥ ∆ + 2. There are
various regions where fast convergence of the Glauber dy-
namics is known, we refer the interested reader to [7] for a
survey. For concreteness we consider the result of Jerrum
[10] who proved that the Glauber dynamics has mixing time
O(kn log(n/δ)) whenever k > 2∆. Moreover, his proof
easily extends to any non-zero temperature. Since A = kn,
using Corollary 5.2 we obtain the following result.

Corollary 6.2. For all k > 0, any graph G = (V, E) with
maximum degree ∆, let Ω(G) denote the set of k-colorings
of G. For all ε > 0, whenever k > 2∆, we can compute an
estimate EST such that EST(1− ε) ≤ |Ω(G)| ≤ EST(1 +
ε). with probability ≥ 3/4 in time O(kn2ε−2 log6 n) =
O∗(n2).

In comparison, the previous bound [2] required O∗(n3)
time (and Jerrum [10] required O∗(nm2) time).

Ising model: There are extensive results on sampling
from the Gibbs distribution and approximating the parti-
tion function of the (ferromagnetic) Ising model. We refer
the reader to [18] for background and a survey of results.
We consider a particularly well-known result. For the Ising
model on an

√
n × √

n 2-dimensional grid, Martinelli and

Olivieri [19] proved that the Glauber dynamics (i. e., single-
site update Markov chain) has mixing time O(n log(n/δ))
for all β > βc where βc is the critical point for the phase
transition between uniqueness and non-uniqueness of the
infinite-volume Gibbs measure. In this setting, we have
A = 2n and, hence, we obtain the following result.

Corollary 6.3. For the Ising model on a
√

n × √
n 2-

dimensional grid, let Z(β) denote the partition function
at inverse temperature β > 0. For all ε > 0, for all
β > βc, we can compute an estimate EST such that
EST(1− ε) ≤ Z(β) ≤ EST(1+ ε) with probability ≥ 3/4
in time O(n2ε−2 log6 n) = O∗(n2).

Independent Sets: Given a fugacity λ > 0 and a graph
G = (V, E) with maximum degree ∆, we are interested in
computing

ZG(λ) =
∑
σ∈Ω

λ|σ|,

where Ω is the set of independent sets of G. This is known
as hard-core lattice gas model. In [23, 5], it was proved that
the Glauber dynamics for sampling from the distribution
corresponding to ZG(λ) has O(n log(n/δ)) mixing time
whenever λ < 2/(∆ − 2). As a consequence, we obtain
the following result.

Corollary 6.4. For any graph G = (V, E) with maximum
degree ∆, for all ε > 0, for any λ < 2/(∆ − 2), we
can compute an estimate EST such that: EST(1 − ε) ≤
ZG(λ) ≤ EST(1 + ε) with probability ≥ 3/4 in time
O(n2ε−2 log6 n) = O∗(n2).

Note, Weitz [25] has an alternative approach for this
problem. His approach approximates ZG(λ) directly (with-
out using sampling) and holds for a larger range of λ
(though ∆ is required to be constant).

7 Lower bound for adaptive cooling

Lemma 7.1. Let n ≥ 1. Consider the following partition
function of degree n:

Z(β) = (1 + e−β)n.

Any B-Chebyshev cooling schedule for Z(β) has length at
least

√
n/(20 lnB).

Proof :
Let f(β) = ln Z(β) = n ln(1 + e−β). If the current in-
verse temperature is βi =: β, the next inverse temperature
βi+1 =: β + x has to satisfy

f(β) + f(β + 2x) − 2f(β + x) ≤ ln B.

Later we will show that for any β ∈ [0, 1] and x ∈ [0, 1] we
have

f(β) + f(β + 2x) − 2f(β + x) ≥ n

20
x2. (24)



From (24) it follows that for β ≤ 1 the inverse temperature
increases by at most

x ≤
√

20 lnB

n
,

and, hence, the length of the schedule is at least√
n/(20 lnB).
It remains to show (24). Let

g(x, β) :=
f(β) + f(β + 2x) − 2f(β + x)

2n
.

We have

∂

∂x
g(x, β) =

e−β−x

1 + e−β−x
− e−β−2x

1 + e−β−2x
.

We will show

e−β−x

1 + e−β−x
− e−β−2x

1 + e−β−2x
≥ x/20, (25)

which will imply (24) (by integration over x).
Let C := e−β and y := 1− e−x. Note that C ∈ [1/e, 1],

y ∈ [0, 1− 1/e], and x = − ln(1− y). For y ∈ [0, 1− 1/e]
we have − ln(1 − y) ≤ y + y2 and hence it is enough to
show

C(1 − y)
1 + C(1 − y)

− C(1 − y)2

1 + C(1 − y)2
≥ 1

20
(y + y2). (26)

Multiplying both sides by the numerators we obtain that
(26) is equivalent to

P (y, C) := y(y + 1)(y − 1)3C2−
(y4 − 2y3 + 19y2 − 18y)C − (y2 + y) ≥ 0.

The polynomial y(y+1)(y−1)3 is negative for our range of
y and hence for any fixed y, the minimum of P (y, C) over
C ∈ [1/3, 1] occurs either at C = 1 or at C = 1/3 (we only
need to show positivity of P (y, C) for C ∈ [1/e, 1], but for
numerical convenience we show it for a larger interval). We
have

p(y, 1) = y5 − 3y4 + 2y3 − 18y2 + 16y, (27)

and

9p(y, 1/3) = y5 − 5y4 + 6y3 − 64y2 + 44y. (28)

Both (27) and (28) are non-negative for our range of y (as
is readily seen by the method of Sturm sequences). This
finishes the proof of (25), which in turn implies (24). �

8 Discussion

An immediate question is whether these results extend to
estimating the permanent of a 0/1 matrix. Our current adap-
tive scheme works assuming a sampling subroutine that can
produce samples at any given temperature (at least from a
warm start). The permanent algorithm of [12] also requires
a set of n2+1 weights to produce samples from a given tem-
perature. These weights are computed from n2 +1 partition
functions and it appears that a schedule of length Ω(n) is
necessary if one considers all n2 + 1 partition functions si-
multaneously. In fact, this is the case for the standard bad
example of a chain of boxes (or a chain of hexagons as il-
lustrated in Figure 2 of [12]).
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